Mechanics of Solids - Review

Kinematics of a continuum
In kinematics we study the motion of a continuous medium (solid or fluid).

The study of motion provides various strain tensors used in the models
of solid and fluid mechanics.

Strain tensors provide ‘metrics’ that can be used to measure changes
in length during the motion of the solid.

From the book: Mechanics of Continuous Media: an Introduction, J Botsis and M Deville, PPUR 2018.
Solutions: https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media



https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media

Continuum mechanics review: kinematics

CONFIGURATION AND MOTION

Xy, 1y The body B is defined as a set of particles or
material points. These particles correspond to

infinitesimal volumes around the points.

Volume occupied by all particles at time ¢
gives the configuration of the body R; or R
with the initial configuration R .

Initial configurations|
att=0andatthe | %
timetof B

The boundary of the body is indicated by
JRg or IR .

The motion of |3 is described by a

vector function X defined over time ¢
For an observer fixed in the Cartesian coordinate system that depends on X.

Xy, 14
with origin at O, the position of PY ofa particle of 5 at =0 X ¢
is represented by its initial postion vector X £ = X( ; )
and its current postion p at time 7 > () by the current position B) X is the initial position of a particle

vector x. currently found at x.
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CONFIGURATION AND MOTION

JX 25 .'172

Initial configurations | »
att=_0and at the ORy
time t of B

X3, 14

By definition the vector displacement u is the vector difference:

u:a:—sz(X,t)—Xzm—x_l(;r:,t)

In the reference configuration (¢ = 0):

r=x(X,t) mmm) X =x(X.0)
The motion is an one-to-one correspondence
between the initial and current positions
of the particles of B5 .
The existence of the function X : Ko — R
x=x(X,t)

anditsinverse X 1 : R — Rg
X =x " Ya.t) with X =x"1(X,0)

guarantees the integrality and unity of the body.
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IMATERIAL AND SPATIAL DESCRIPTION

In continuum mechanics the material description, or Lagrangian description , signifies the study of physical
or mechanical phenomena by observing what happens to a particle P of the body.

Alternatively the spatial description, or Eulerian description, consists of observing the events
occurring at a fixed point in space. Thus, when the events at all fixed points in space are recorded,

we obtain the spatial description.

For simplicity we consider the same coordinate system with the same origin and base vectors
e;, (i =1,2,3) todescribe the motion in both descriptions.

It is practical for the problems in solid mechanics
to formulate and solve in a material description
° - while those in fluid mechanics are easier

in a spatial description.

BN ._ Material and spatial descriptions for a flow represented
L by the arrows
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IMATERIAL AND SPATIAL DESCRIPTION

reference configuration : By definition, it is a particular configuration R, used to identify each particle of 15 .
It is easier to define the reference configuration to the initial one Ry of B at7=0.

Material description:

description in which the components of the initial vector position X

are independent spatial variables.

Spatial description:

description in which the components of the vector position at later times x are independent spatial variables.

Convention for simplification
functions written with small letters refer to functions of spatial variables, for example, f (x, ?);
functions written with capital letters refer to functions of material variables, for example, F' (X, ?).

, Spatial description:
fle.t) — f(X(X‘-”‘f) = I'(X,1) X, t are the independant variables.

and F(X.,t) — F(x_l(;r.f‘)._z‘.) = f(x.t)  Material description:
X, t are the independent variables.

For the partial derivatives we can use either the material coordinates or the spatial coordinates and relate the derivatives
of the function with respect to these variables using the chain rule for derivatives of composite functions.



Continuum mechanics review: kinematics

CONFIGURATION AND MOTION

JX 93 .'f-'Q

Initial configurations
att=0and at the
timetof BB

€ |

JX LT .'1‘73

) +u(a,t)  —

A particle is initially (r = 0) at X and after a time
tis at position x.

—

x=xX,t)=X+U(X,t)

Displacement in
material coordinates

In spatial coordinates the displacement is

u(x, t) = U(X_l(:ﬂ,t),t) =U(X.t)

The two displacement vectors are equal.

Inverse transformation

X =x"'a.1)
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Velocity of a material particle

The material description of velocity of a material particle
at time ¢ is the derivative of the motion function with
respect to time:

r=x(X,t) m) V(X,1t) = i')x(tf._t)

The vector V (X f) expresses the velocity at time ¢
of the particle that initially was at X.

Using:
r=x(X,t))=X4+U(X.1)

U (X 1)
ot

The spatial description of velocity v(x; ¢) is given by:

V(X,t) =

v(ix,t) = V(x‘l(m._t).t) =V (X,1)

We obtain the velocity at time ¢ in terms of displacement:

Material derivative for a spatial field

Let ©(a,t) be ascalarfield of 3. During a motion
material derivative of @ (a, ) written as:

p or Dp/Dt

is the rate of change of ©(a, ) with time (the
derivative with respect to time) for a single particle of I3,

Dop(ax,t) do(ax,t) e
_ Op(x,t) Dp(ax,t)
- o W Oxj

The derivative D.-T.’;(;I:_. tj/Df_ is the material derivative.
It represents the rate of change of the function p(x, t)
following the same particle whose velocity is vV(x; 7) .
Alternatively, this derivative can be considered

as giving the change of ©(a.t) over time, as seen by
an observer moving with the particle that is at x.
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Material derivative for a vector field w Material derivative for acceleration
_ The acceleration 4 is defined as the material derivative
For a vector field w we have: of the velocity V with respect to time t at time t.
D . OW (X, 1
e w = ( ) ) In material description:
DI{ (_)f X:x_iliﬂ?,t) - 2
| aV(X.,t) O x(X.t)
f— U-11 o = B ’
Df- df sz_liiﬂ,t] 4- L'r C)z‘tl(X. f)
| | i = Vi = 072 )
. Ow(=x.t) Ox(X,t) ot
w=———">4+ (Vw(x,t))—— : N
It It X1 (a.8) In spatial description:
) ) .0 N
e Ow;(x.t) N Ow;(x, t) N a=1v= % + (Vo(z, t))v(x, t)
& I i J : d
Ot Ox | |
g . Ovi(x,t)  Ovi(a.t) (1)
a; =1 = ——— + ———vi:(x,t
' ! l(‘_')f. Jx; /

due to the time dépendence
of v at a fixed point in space
(local).

l

due to the heterogeneity
of the velocity field.
(advective).
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Deformation gradient tensor

We consider a particle in configuration K with

X Ty position X° and a small neighborhood around it ). .

Its motion is given by, * = x (X, 1)

Initial configurations
att=0andat the|
timetof B

For a sufficiently small }. the motion for each

particle in )/ is approximated by a Taylor series
around X" as follows

Yi(Xg, 1)
0 OXi 0 02
i (X3 1) 4 - (X; = X7)+o(|x = X7|7)
k
o The tensor F with components where
O O (% - X°?) ~ ¢l x X+ -
70X,
is called the Deformation gradient tensor . and C being a bounded constant.
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Deformation gradient tensor

If |1 X — X" <<1
ry = Xi( Xk, 1)

O\

k

(X5 = X7) +O(IX = X"|I?)

=) 1; ;.‘-_‘-? 4_}:!1.}. (Xj _ XE) with ;I.‘-E = \i (X;{g IL.)

To assure the continuity of the material and
the existence of continuous derivative the

Jacobian J of F defined as:
IXi
J =det| —— | = det F
(@Xj)
should satisfy the condition:
0<.J <o

which ensures the existence of the inverse F*!

or doe = FdX of F withdet F=1/J.
dx;
and for simplicity [, = ——
PR T = oy,
oU, we use the motion
2. & z=x(X,1) =X +U(X.1)
C)X«L N O i Ox; — -1 . .
j L4 (_}XJ
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Using the polar decomposition theorem, we can express
The deformation gradient tensor F as follows:

F=RU=VR

left polar
decomposition

right polar
decomposition

The three tensors are unique:
R expresses a rotation; U and V are called
the right and left stretch tensors:

whenR=1T== F = U =V

we have pure deformation.

[ From N

de = FdX wms) Jr = RUIX

y

the configuration change in the neighborhood
of the material particle is obtained by the transformation
of vector dX to a vector UdX by a pure deformation U

followed by a local rotation R. /
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Deformation tensors

Using dax = F d X inindex form we have:

CE;I.’--;__ = F? g d}(j

We can define the square ds o the vector dx as

ds® = ||nf£:;.~f:\|:2 = dx,, dr,, = F;Fp,; dX; dX;

From this expression we can define the following tensor:

Cc=F'F=(F'F)" Cii = FiF;

Which is defined as the symmetric
right Cauchy-Green deformation tensor.

It is a metric tensor in that it can me used to calculate
the length of dx as a function of the components dX.

We can also calculate dX in terms of dx as follows:
with:

_ -1 . _ -1
d@X =F'dx ; dX =Fdx,

dS* = ||dX||* = dXp, dXp, = F,,; F,} da; dx,
1
and Fn;.an;jl = (FT) Fn;jl

im

we define the tensor:
C—l _ F_TF_l _ (F—TF—l)T
or 1 — p—1lp-1

1] mi > myj

is the inverse of the symmetric left Cauchy-Green
deformation tensor c.
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Deformation tensors

‘ The two tensors

1: symmetric right Cauchy-Green deformation tensor
2: symmetric left Cauchy-Green tensor

are used to express the difference between the squares
of the norms ||d:r:||2 and ||d,_XH2 as follows:

|da||* — [|dX||* =

|d||* — [|dX||* =

Cis dr;dr; = I? dx

The two nhew tensors are:

— dir‘-m d'irm -

(Cij — dij)

(31 — ci3')

1: the Green-Lagrange strain tensor Ei.;j =

Do | —ro | —

2: the Euler-Almansi strain tensor €ij =

These tensors can also be written
in terms of displacements U or u:

oU,, 3
’?3 — Fm?ij ( mi T 0)(1') (Omj +

. (‘)LTI (‘)[fj ({')U;,n (")Um_
= 0ij + 7
0X, ' 0X; ' 0X, 0X,
ou
1 1 1 - m -
Cij — Fn” Fynj — (ami — OII) (()mj —
. Ju;  Ouj  Ouyy, Ouyy,
=0ij — o - — 5t =
g _ 1 (9U ou; oU, U,
Y2 \0X, 90X, 00X, 0X;
1 /Ou; Ou;  Ou,, Ou,,
€i;i — =< -+ J .
J 2 ()IJ (‘)I@ (‘)Ia OIJ

T T
U m

a'u-:fn

)

OX ;

)
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Deformation tensors

The deformation tensors can also be expressed in terms of

tensors U and V' by applying the polar decomposition: Note that the rotation R does not affect the
F-—RU~-=VR deformation and strain tensors.
(very important in continuum mechanics)

v yY

1: the right Cauchy-Green deformation tensor:

C-—F'F-—URTRU = U? Also when F = Q we have a rigid body motion
easily shown below:

2: the left Cauchy-Green deformation tensor:

c— FFl —vRRTVT = v?2 From F=RU we have:
cl=FTFp1=-v-2. Q=RU = R'Q=R'RU = R'Q=1U
without loss of generality we set:
3: the Green-Lagrange strain tensor: 0=R
E = %(C —I)= é (U2 — I) Because they are both orthogonal tensors
4: the Euler-Almansi strain tensor: = U= = E=0

| o .
825(1—(31):5(1—‘/ )

and similary V=1 = e=0.
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O .

Linear and surface elements
in the Ro and R of the B

€3

X,

dX = N| dX||
||::ﬂ;r::||2 dX - CdX 9
5 = = N-CN =\
[dX | [ldX[[[[dX]| o
AN is the stretch ratio at X in the direction N

Y=’

Jdall
x|

Description of a linear element in two configurations

Using F and the deformation tensors we can express
The change in length of a linear element:

A linear element dX in the reference configuration
has a norm:

|dX | = (dX - dX)'/?

After the motion @ = x(X,t) it becomes the
element dx with norm:

]| = (d - da)1/?
Using dee = FdX and C — F1 F we obtain:
|dz|* FdX-FdX

lax|]> fldx|]?
_dX-F'FdX dX -CdX
|4 X1]* ld.X ||

(N-U?N)"? = (UN -UN)"/2 =
= [UN| = An.
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Linear and surface elements
in the Ro and R of the B

0 -
€] X, 1

€3

dX = N,[[dX|| dY = N,|dY]||
dX and dY are unit vectors along X, ¥

|FdX| = (FdX -FdX)"/? =(dX - CdX)"/?

N,-CN, .
(N, -CN,)'/2(N,-CN,)'/2

The difference ® — @ is attributed to shear.

cosf =

Description of the angle between two linear elements

in two configurations

For two linear elements d.X and dY inthe
reference configuration that intersect with angle @
we have:

dX - dY
[ X ||

cos ©® =

After the motion these two elements become dx
and dy that intersect with angle ¢ :

dx - d
) COSO = G
ldz|[ ||dy|

Using de = FdX;C=F'F; C=U"

i

. FdX -FdY dX -F'FdY
COS = —
|FdX||FdY| ||FdX||FdY|
_ dX-cdy
|FdX| || FdY|
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Linear and surface elements
in the Ro and R of the B

Xy, 19

0) -
& Xion

€3

dv =det FF dV = .JdV |{cm

Description of volume element between
two configurations

Consider three non-coplanar linear elements:
dX,dY,and dZ.We have:
dV =dX - (dY xdZ) >0

In the deformed configuration, the three linear
elements become dx, dy and dz and the volume is:

dv =dx - (dy x dz)

We know that dx; = F;; d X .

l dl’l dyl dz:l
dv=det| dro dys dzo —

Fi;dX; FydY; FyidZ;
=det| Fy;dX; Fy;dY; Fy;dZj
F3dX;  F3;dY;  Fi;pdZ;
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€3

O

Linear and surface elements
in the Ro and R of the B

Ry /
n

X,

nds=JF TN dsS

Description of surface element between
two configurations (Nanson’s formula)

To express the change in a surface element we
start with the volume element in the reference
and deformed configurations:

dV =dX'-N dS dv =dx’ -nds
using dao = F dX

Relation dv = det F'dV = .JdV becomes

dv=FdX'" -nds=.JdX"-NdS

or

o K——— (FTnds—JNdS)-dX’:O

ds = JF~TN ds

known as Nanson’s formula

which is valid for any arbitrary vector X’/
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Xy, 1y

Transformation
of a vectorin —
homogeneous —
deformation

Homogeneous deformation

Important cases of homogeneous deformation
1: Translation: M is the unit tensor I and if X° =0

T ::BU(I‘,) + X

Xg, T3

2: Rotation about the origin: X" = 2° = 0
and M is the rotation tensor R (RT R=RR™=I)

m) = = RX X =R"z

rigid body motion is decomposed
into rotation and translation

The deformation (or transformation) x of a body I3 is
defined as homogeneous if the corresponding deformation
gradient F'is independent of the particle's position X.

A homogeneous deformation transforms a straight

line P'P of R toastraight line p P of R.

Such a deformation x is an affine transformation and has
the following general form (with ;L‘[-] = Xi(X_;?: t)):

£y = 2 (t) + My () (X, — X?)

In vector form it is:
z=a"(t)+ M(t)(X — X")

with its inverse given by (0 < det M < o0):

X=X"+M"t)(z—2")
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Xy, 2
X,, 1 Simple shear
P
Uniform > po . Ry R,
expansion —_ / /
Ry ; rF
PO ;’! !r!
e, X r" ::
i a—;ll 'R .'! :
y ej X1,z €9 [ ;,; :-f
O | - ;
€1 Xi. 1
4: simple shear
1 k 0
0O 1 0
0 0 1

in Cartesian coordinates | M| =
in vectorform o = M X = (I +ke; ® eg)X

X3, z3
3: Homogeneous deformation: A = mJ

L — LLED(IL,) + ﬂ{[@j(t) (Xj — X?)
with a fixed origin X = 2% =0
g — JX3 :

- L1 — )(1 -+ ALXQ Lo = JXQ

) o =a, +m (Xg- — X7 )
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Small Displacements

Consider a displacement field dependent on a small real
number ¢ (¢ <<1) such that:

Lagrangian/

U(X)=:W(X)where W(X)and w(x)
are known.

Eulerian

/

From the Green-Lagrange and Euler-Almansi
strain tesnors:

[ 1 (E'JUE N oU N U, (")Um)
Y2\ 0X,  0X;  0X; 0X;
L [ Ou;  Ouj  Ouy, Ouy,

“ij = 5 (84'3- i 81?3' B E);L‘i a;i-'j ) '

1 (C)'IL-‘E; n 8-wj 21 au-’m au.‘m
€E . = E_ - ; — E - .
J 2 \ du; dx;

AW, N oW R ¢21 oW, oW,
X -

0X, 2 0X; 0X,

2 Oy

(__)'J_f i

When ¢ — ( approaches zero we obtain

U

1 /oW,
E ij ~ E— (

e i —I_ 's — = 'S —I_ 'S
2 0X j 0, JX?; 2 0X j e, ){i

)

1 (Ow;  Owj 1 [ Ouy  OJu;
e ([— L) = (L),
2\ dx; Oy 2 \Ox; O,
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Kinematic linearization

Using:
v =X;+U; = X; +W;

Wi(Xk) = wi(xg)

we can write:

d [,-’Tg; o i)ﬂ} L {‘:)'EL?E- O k
(i:)){j - E)Xj - (i)ik (C)}{j
9, 1wy 9, IIT,IM

L
-
—

| fi'};{f ke

(rfkj + &€ )

0X

 Oup 50wy OWy

N J G 0X;
‘ ?Ui — ?ui + O(e?) ~ ?ui
oX;  Jduj d;

When the displacements are small and O(EZ) — 0
approaches zero, the difference between the two strain

tensors is negligible.

Based on results in engineering applicatios we have:

) Figl — 51} — O(E

oU;
_ = (¢ 1
Hi‘)Xj () <
i oU;
Fij = 0ij + 5~
X,
_ N O
lejl: rjl_}' — - -‘j*E
tLj
J = det F

== Jx~1+0(¢)

)
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Infinitesimal strain tensor

The resulting kinematic linearization:

?[{i _ {?u.i N O(.EQ) N ().u1
0X O j du
2

shows that if terms of order =< are negilible
i.e., O(c?) — 0 there s no difference
between Green-Lagrange and Euler-Almansi
strain tensors. Therefore, we introduce the
infinitesimal strain tensor:

1 7] [J'Ti, 1, [.J'Tj 1 (.—-)'U.z' ou j
“i=5\ox, Tox, ) =2 \ar T on
2 \0X; 0X; 2 \dw; Oy

— (VU +(VU)") =

1
5 (Vu + (Vu)T)

[\..-'|I—'~

Note: £ isa 2" order tensor because the

displacement gradient is a tensor shown next.

ou
Note that : (V”)kz =
OX,
If it is a 2" order tensor, it should ou, =c,cC, %
be transformed as follows: 8xj s OX,
We know that,
8u ou, Ox, ox, Ou,
ox. " ox. ox, Ox, Ox,
j j
' ﬁxl
X, =CyX, = —=¢
Ox .
J
ou, ouy,
= —— = (¢,
ij OX,
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Infinitesimal strain tensor

The resulting kinematic linearization:
f) [JT?: E)H-j

— L = 1+ 0(e?) ~ dui

0X o S du

shows that if terms of order =2 are
negligible

i.e., 0(52) — () there is no difference
between Green-Lagrange and Euler-Almansi
strain tensors. Therefore, we introduce the
infinitesimal strain tensor:

I 1 [ oU; n au;\ 1 [ Ou; N du;

“1] 2 (i)}{j [’Dfi o 2 i)ij. 0{){2
1

(VU +(vU)T) = = (Vu+ (Vu)T)

| =

E:tﬁ [

-

L

Note: € isa 2"dtensor because the
displacement gradient is a tensor.

—

Since it is tensor the transformation law for its components
is given by:

! )

The eigenvalues, which correspond to the principal
infinitesimal strains, are from the solutions of equation:

AP — I (D)A* + Iy (D)\ — I5(L) = 0
With L = ¢

Note that the tensor € is linearinV .

Therefore for the strains E(l). 5(2). ..

resulting from the displacements uV u®

the principle of superposition applies, i.e., the total strain:
e=e 42 4 .

corresponds to

u=ul) +u? + .
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Infinitesimal strain tensor

Given the displacement field, the strains are
calculated frrom:

B l E:)-u.i ﬁ’)'ttj l

D) (c‘).rj i c').m') ) (‘ui’j T u50)
However, for a given £, , a corresponding
displacement field does not necessarily
exist. To make sure the displacement field
exists, the conditions of integrability should
be satisfied. Based on differential calculus
these conditions are obtained by

differentiating the strain-displacement
relations, i.e.,

€ij,kl T €kl ij — Ejlik — Sik,j1 = U

=

These are the so-called compatibility equations and in
explicit for the are six of them:

D?c 1, Oco de ey

i ;_11 _Y 23 + 2 31 + 2 12

Oxo0ixs AR darq dxo duxs

D?co: 1, Je: e Jeo:

_ ;_22 . 31 4+ 12 + 23

Oargday drg

(‘:)2533 J (‘_:)512 n if)-fgg n 02731
Our10ry  Oxs O.rs Oy o

oA g daq

2 . : 12 . 2 .

o €12 1 J £11 i 9, £929
Or10re 2 \ Org? Oy

2 . : 12 . 02 .

19, €23 1 0 £9292 n 19 £33
Oaolrsg 2 \ dig? Oiro?

2 . : 02 N2 .

o €31 1 J £33 I 0, £11
(::).173(;91.‘1 2 (::);Elz (i:);£732 .

$

The are the necessary and sufficient conditions for a unique
displacement field when the body is simply connected.

for multiply connected elastic solid, they are not sufficient and
additional conditions are needed.
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Infinitesimal strain tensor &,

The length of the corresponding vector dxin TR is given by :
1: Interpretation of the component <,

Consider an infinitesimal vector dX attached to deHQ — HdXH2 = 2L dX; dX;
the point X with components (dX}; 0; 0). l
o Hd:I:H2 = ||d.XH2 +2E;;dX; dX; = (1 +2E4,) de
D;fOFmGtiOf; of — A I (assuming small gradients)
infinitesima
vector aligned\ ”de2 =~ (1+ 2511)”dXH2
with e, / ld|| = (1 +2211)2dX1 = (1 4 en1) [ dX |
€ 4 Ry 1
0 _X £11 = Hde - ”dXH
i o ] |dX ||
X3 a3 .
The other diagonal components relative extension of a material line element

£22 and£33 of £ have similar |4 aligned with direction 1.
interpretations.
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Infinitesimal strain tensor Eij

In /X these vectors are deformed to da:, d'g

2: Interpretation of the component <12 :
with components:

Consider two orthogonal vectors in R : de; = F;1dX,  dy; = FiodYs
dX = (dX1,0,0) dY = (0,dY3,0) The corresponding lengths are:
Hd&?” = (1 + 511) d X1
Xy, 29
Change in angle ||d’g|| Y] (1 + 522) dYs
between two vectors R
The angle 712 between them is:
\
dx - dy
@ COS Y12 =
x, T de]| || dy|
* i~ 2512 ™ 2
0 - - — = Z2&19
L e (1 +e11)(1 + €22
X, Tﬂ/cos Y12 = Sl Q12 = P12 = 2619 ¢
: T .
Similar interpratation can be given to with @12 = o /1234 slip angle.

£23 and<31.
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Infinitesimal strain tensor &,

3: Relative variation of a volume element

We consider three orthogonal vectors:
dX = dX e, dY = dY es.dZ =dZ es

In the referenced (undeformed) configuration.
Volume before deformation: dV = dXdY dZ

After deformation:
dir = (1 + Ell)d)ir dU — (1 T -:’“22)(]}/
dz = (1 T Egg)dZ

!

dv = dxdyd:z
= (1 + &.‘11)(1 + -:’“22)(1 + -Egg)d)ird}’rdz

— (1 -+ Ell)(l -+ .522)(]_ 41 ESS)dLJ

Neglecting the higher order terms of the deformation:

dv —dV
- = = £11 T £99 +533 = &ii
dV

which is the trace of the strain tensor .

Recalling the definition of the divergence of a vector
field we have:

gy = divu = tr (Vu)
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Infinitesimal strain tensor & The changes of coordinates modify the components
of the tensor according to the relation:

The matrix form the tensor € is:

g, &n [5} =[C][][cT

811
[8] =& &y &n For a plane stress problem, its expilict form is:
€31

832 833 l

. e . . . & cosd sin@\e. &, )\ cos@ —sind
To obtain the principla strains we solve the characteristic ( 1 12] :( j( 1 12](

equation: &y Ey —sin@ cos@ )\ &, &, )\sinf cosf
3 2 ' ; ;

A =LA +1L(e)A —1,(g)=0 &, =&, 08" O+&,sin’ @+2¢, cosOsin

The three strain invariants are, £, =&,8in” @+¢&,, cos’ @—2¢&, cosPsinf

&, = (&, —&,)cosOsin O+ &, (cos” @ —sin* 9)

]1 (5) = gii & i = divu = tr (Vu)

These expressions and the corresponding ones for
) IL(e)=dete > ,
stresses are similar. It means that we can use Mohr’s
circle to calculate strains along different directions.

1
I1,(¢) :E(giigjj — &6

i.e., similar to the stress invariants.
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X2
N
Application: Experimental strain measurements
We can measure strains along the direction of the b Wa
applied load (in uniaxila traction/compression) with
the use of electrical-resistance strain gauge o 919
(a wire grid or metal foil bonded to the specimen). vl \(961
A combination of strain gauges to measure strains on ‘ A 5 X
a surface in different directions exists. We use a cluster 90 ,"
of electrical-resistance strain gauges arranged in ! \
a predetermined pattern and are called Strain rosettes. ! Strain
Two commonly used ones are: c W rosette
square rosette:
. . . . _ 2 . 2 .
6 =0°; 6,=45"; 6. =90° _ E,=¢&,c08 0 +¢&,,sin" 0 +2g,cos0, sinb,
E,=€,5 Ep=¢&.; 26,=2¢—(g,+€.) g, =&,c08 0 +¢&,sin” O, +2&,cosb, sinf,
60° rosette: £ =&,c08 0 +&,sin’ O +2¢,c0s60 sinb.

6, =0"; 6, =60"; 6 =120°

1 0 (&, =&,) [8] _ &1 €n
&1 =€, 5 &p :g(ng +2‘9c _ga) ) 2‘912 :ﬁ(gb _80) — &y €y




Continuum mechanics review: kinematics

Infinitesimal rotation tensor W

3: Relative variation of a volume element

For a displacement field w we have

i
du; = ;id;{.'j
1 (‘)u% a'l.‘,j
= — - - d; o
> (ai,-j N ai;g-) e
or
du = Vudx
1
=3 (Vu + (Vu)) de +
symmetric
E

1

2

1
2

?ui — ?uj dux
d;l-'j (’)}(5

(Vu — (Vu)') dx

antisymmetric

¥

w

or

| =

(Vu— (Vu)")

St

I

o 1 &)-u;; a'uj w —
D) dxj dux; o

with dﬂi = &4j d;ﬂj T Wiy d;tfj

The three independent components of the antisymmetric
tensor (v can be expressed as the curl of the displacement
vector

§V X U = W3z€] T W13€2 T Wa1€3

The infinitesimal displacement can be decomposed into a
sum of a pure strain tensor and a pure rotation.

An additive decomposition of the displacement gradient is
not possible for large strains where (E # ¢). In this case
we should use

F=RU=VR
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g O, o __Ou
1 ? 2
OX, Oox,
. 1
D ¢, =0,-0,; ﬁ"‘%zzg
dx,
A ; cos f=sing, = ¢, =
* ] “ Ou, Ou
— 2 |
N dx, X, U, Y, Ox,
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Objectivity of kinematic parameters

Distinguish between two descriptions

1: change of coordinate system for the same event for a single observer
This development is the basis of tensor analysis and is imposed by the
requirement that all laws of continuum physics must be independent
of the choice of coordinate system by the observer.

2: change of the observer or reference frame. Here the same event is
described in two different reference frames.

A reference frame must have an observer

to record the event as well as a coordinate system.

EXAMPLE: Inertial reference frames (a body moves with constant
velocity when free of forces). Newton’s 2"d law hold.

Anther example is an accelerated reference frames.

Here Newton’s 2"d law needs to be modified.

Rotating reference frame. This frame of reference is rotating

with respect to an inertial system and requires an additional
acceleration). Newton’s 2" |law needs to be modified.

In mechanics we want to distinguish
the kinematic parameters, scalars,
vectors, or tensors, which depend
intrinsically on the observer from those
that are essentially independent.

This is particularly important in the
description of the constitutive relations
with non-linear materials response.

In mechanics of continuous media,

an event, that is, a physical process, is
defined by its coordinates in space x and
the observation time t.
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Objectivity of kinematic parameters

1')
X~ Two observers move

/ /L in two reference frames
following an event at P.

! I)z

O / 124
();/ :I'i

Consider an event viewed by two observers R and R*,
and noted respectively by (113 t) and (il?*,. t*) :

The motion between two observers is a function of
space and time (effects due to relativity are negligible).

The two observers measure the same distance between
two events as well as the same time intervals between
events.

The most general transformation between the two
observations of the same event is given by:

The same observation at P (experiment) seen by
two observers in the corresponding reference
frames at the same time. For the observer at R.
the vector position is x. For the observer at R*
we must take into account the rotation of R
with respect to R*.

where t¥ =1 — «

x* = Q1) + eft)

Here (Q(1) is an orthogonal tensor with time as a
parameter, ¢(1) is a vector and « is a scalar.
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Objectivity of kinematic parameters

Ol

Two observers move
in two reference frames

~._ following an event at P.

O

~
~
~
~
~
~
~
~

A ¥ 5

oy

]| = ||| G

ut-u”

—u (Q"Qu=uu

= (Qu) - (Qu) p

The transformation ™ = Qu ‘ is that of a rigid body.

The motion of the body 3. described by X (X, 1)
according to the first observer, is described by the second
observeras X" (X, %),

The two descriptions are related as follows:
X (X, 17) = Qt)x(X, 1) + c(t)

To examine the ramifications of this relation we consider
two events reordered by:

R (mlt) ’ (Q?’Qt) ; R*: (iBTf) (ﬂl‘;f)
The relative positions of these events are:

*—

R,:u:mg—wl;R*;u*:mQ

4
u*:Qul

kS
L9
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. . . T
Obijective fields H w'=Qw=QLv=QLQ v’
 _ ;I
A vector field transformed according to: v= Q’U N T
L" =QLQ
u™ = Qu |is called spatially objective vector field. '
A tensor transformed according to the last relation
Using this definition we can defined a spatially : is spatially objective tensor or independent of the
objective 2" tensor filed. reference frame.
For two spatially objective vectors v and w In summary

seen by the observer R , are related by:
A scalar quantity ¢ is objective if and only if (iif) @™ = o

w = Lv.
A vector quantity fis materially objective iff _f* = f:

Since they are objective, the observer R* sees

. . . . . . * —_— #
A vector quantity f s spatially objective iff f =Qf:
w* = Qw and w* = L™v*
A tensor quantity 1 is materially objective iff 1"~ = T

A tensor quantity T is spatially objective iff 1~ = QTQT
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Objectivity of velocity and acceleration

We have for the velocity V(X_ g{) — X(X t)

and acceleration

AX,t) = x(X. 1)

Q(t)x(X.1) + c(t)

$

VX, t*) = Q)V (X, t) +é(t) + Q(t)x (X, 1)
A*(X:t*) — X*(Xt*)

=)

Q(t)X(X.t) + c(t) + Q(t)x (X, 1)
+2Q(t)V(X.t).

The definitions of the velocity and acceleration are
relative and inextricably linked to the observer.

For the deformation gradient tensor we have

FH (X1 = dx’;(XXrt)
X (X.t) Ox(X.1)
ox(X.,t) 0X
— Q(t)F(Xt)
and

J* =det F*(X,t*) = det F(X,t) = J

Starting from the definitions of the corresponding
Tensors it can be shown that:

cC"=C E*=F
' =QcQ" e =QeQ"
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