
Mechanics of Solids - Review

Kinematics of a continuum      

In kinematics we study the motion of a continuous medium (solid or fluid).

The study of motion provides various strain tensors used in the models 
of solid and fluid mechanics. 

Strain tensors provide ‘metrics’ that can be used to measure changes
in length during the motion of the solid.  

From the book: Mechanics of Continuous Media: an Introduction, J Botsis and M Deville, PPUR 2018.
Solutions: https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media

https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media


Continuum mechanics review: kinematics

Volume occupied by all particles at time t
gives the configuration of the body         or  
with the initial configuration        .

The boundary of the body is indicated by            
or         .

The body        is defined as a set of particles or 
material points. These particles correspond to 
infinitesimal volumes around the points.

For an observer fixed in the Cartesian coordinate system
with origin at O, the position of         of a particle of        at t=0
is represented by its initial postion vector X
and its current postion p at time t > 0 by the current position 
vector x. 

The motion of        is described by  a 
vector function defined over time t
that depends on X.

X is the initial position of a particle
currently found at x.

Initial configurations 
at t = 0 and at the 
time t of 

CONFIGURATION AND MOTION
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CONFIGURATION AND MOTION

By definition the vector displacement u is the vector difference:  

Initial configurations 
at t = 0 and at the 
time t of 

In the reference configuration (t = 0):

The motion is an one-to-one correspondence
between the initial and current positions 
of the particles of      .

The existence of the function

and its inverse 

with

guarantees the integrality and unity of the body.
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MATERIAL AND SPATIAL DESCRIPTION

In continuum mechanics the material description, or Lagrangian description , signifies the study of physical 
or mechanical phenomena by observing what happens to a particle P of the body. 

Alternatively the spatial description, or Eulerian description, consists of observing the events 
occurring at a fixed point in space. Thus, when the events at all fixed points in space are recorded, 
we obtain the spatial description. 

For simplicity we consider the same coordinate system with the same origin and base vectors
to describe the motion in both descriptions.

It is practical for the problems in solid mechanics 
to formulate and solve in a material description 
while those in fluid mechanics are easier 
in a spatial description.

Material and spatial descriptions for a flow represented
by the arrows
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MATERIAL AND SPATIAL DESCRIPTION

reference configuration : By definition, it is a particular configuration       used to identify each particle of      .
It is easier to define the reference configuration to the initial one          of        at t = 0.

Material description:
description in which the components of the initial vector position X
are independent spatial variables.
Spatial description:
description in which the components of the vector position at later times x are independent spatial variables.

Convention for simplification
functions written with small letters refer to functions of spatial variables, for example, f (x, t);
functions written with capital letters refer to functions of material variables, for example, F (X, t).

and

Spatial description:
x, t are the independant variables.
Material description:
X, t are the independent variables.

For the partial derivatives we can use either the material coordinates or the spatial coordinates and relate the derivatives 
of the function with respect to these variables using the chain rule for derivatives of composite functions.



Continuum mechanics review: kinematics
CONFIGURATION AND MOTION A particle is initially (t = 0) at X and after a time

t is at position x.

In spatial coordinates the displacement is

The two displacement vectors are equal. 

Inverse transformation 

Displacement in 
material coordinates

Initial configurations 
at t = 0 and at the 
time t of 
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Velocity of a material particle
The material description of velocity of a material particle 
at time t is the derivative of the motion function with 
respect to time:

Using:

We obtain the velocity at time t in terms of displacement:

The vector V (X; t) expresses the velocity at time t
of the particle that initially was at X.

The spatial description of velocity v(x; t) is given by:

Material derivative for a spatial field

Let                   be a scalar field of       During a motion  
material derivative of                  written as: 

is the rate of change of                  with time (the
derivative with respect to time) for a single particle of       

The derivative                              is the material derivative.
It represents the rate of change of the function 
following the same particle whose velocity is v(x; t) . 
Alternatively, this derivative can be considered 
as giving the change of                   over time, as seen by 
an observer moving with the particle that is at x.

or
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Material derivative for a vector field w

For a vector field w we have:

Material derivative for acceleration 

The acceleration A is defined as the material derivative 
of the  velocity V with respect to time t at time t.  

In material description: 

In spatial description:

due to the time dependence 
of v at a fixed point in space
(local).

due to the heterogeneity
of the velocity field.
(advective).
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Deformation gradient tensor We consider a particle in configuration         with

position        and a small neighborhood around it       .  

Its motion is given by,

For a sufficiently small        the motion for each 
particle in      is approximated  by a Taylor series 
around        as follows

where 

and C being a bounded constant.

0X

0X

The tensor  F with components    

is called the Deformation gradient tensor . 

Initial configurations 
at t = 0 and at the 
time t of 0X
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Deformation gradient tensor

If                         << 1 

with  

or

and for simplicity

To assure the continuity of the material and 
the existence of continuous derivative the
Jacobian J of F defined as:

should satisfy  the condition:

which ensures the existence of the inverse F-1

of  F with det F = 1/ J.

we use the motion 
to obtain
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Using the polar decomposition theorem, we can express
The deformation gradient tensor F as follows:

right polar 
decomposition

left polar 
decomposition

The three tensors are unique:
R expresses a rotation; U and V are called
the right and left stretch tensors:

when R = I

we have pure  deformation.

From:  

the configuration change in the neighborhood 
of the material particle is obtained by the transformation
of vector dX to a vector UdX by a pure deformation U
followed by a local rotation R.
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Using                           in index form we have:

We can define the square ds o the vector  dx as

From this expression we can define the following tensor:

Which is defined as the symmetric 
right Cauchy-Green deformation tensor.

It is a metric tensor in that it can me used to calculate 
the length of dx as a function of the components dX.

We can also calculate dX in terms of dx as follows:

with:

and

we define the tensor:

or   

is the inverse of the symmetric left Cauchy-Green 
deformation tensor   c.

1 1X F x  ;  m mi id d dX F dx− −= =

( ) 11 1 1T
mi mj mjim

F F F F
−− − −=

Deformation tensors
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Deformation tensors

The two tensors 
1: symmetric right Cauchy-Green deformation tensor
2: symmetric left Cauchy-Green tensor

are used to express the difference between the squares
of the norms               and                  as follows:

The two new tensors are:

1: the Green-Lagrange strain tensor

2: the Euler-Almansi strain tensor 

These tensors can also be written 
in terms of displacements  U or u:
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Deformation tensors

The deformation tensors can also be expressed in terms of
tensors U and V by applying the polar decomposition: 

1: the right Cauchy-Green deformation tensor:

2: the left Cauchy-Green deformation tensor:

3: the Green-Lagrange strain tensor:

4: the Euler-Almansi strain tensor:

Note that the rotation R does not affect the 
deformation and strain tensors.
(very important in continuum mechanics)

Also when  F = Q we have a rigid body motion
easily shown below:

From                     we have:

without loss of generality we set:

Because they are both orthogonal tensors

and similarly                                      .                        

F = RU
1 1 1Q = RU     R Q = R RU     R Q = UI− − −⇒ ⇒

Q = R

0  U = I      E = ⇒ ⇒

0V = I      e = ⇒
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Description of a linear element in two configurations

Using F and the deformation tensors we can express
The change in length of a linear element:

A linear element    in the reference configuration
has a norm: 

After the motion                                  it becomes the 
element         with norm: 

Using                           and                          we obtain:

.

is the stretch ratio at X in the direction N
2C U=

.

Linear and surface elements 
in the        and       of the 
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Description of the angle between two linear elements
in two configurations

For two linear elements    and in the 
reference configuration that intersect with angle 
we have: 

After the motion these two elements become         
and         that intersect with angle     :

Using                          ;                       ; 2C U=dX and dY are unit vectors along X, Y

The difference                 is attributed to shear.

Linear and surface elements 
in the        and       of the 
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Description of volume element between 
two configurations
Consider three non-coplanar linear elements:

,       , and        . We have:

In the deformed configuration, the three linear 
elements become                 and        and the volume is:

We know that                                .  

Linear and surface elements 
in the        and       of the 
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Description of surface element between 
two configurations (Nanson’s formula)

To express the change in a surface element we 
start with the volume element in the reference
and deformed configurations:

using

Relation                                                   becomes

or

which is valid for any arbitrary vector  

or

known as Nanson’s formula

Linear and surface elements 
in the        and       of the 
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Homogeneous deformation

The deformation (or transformation) x of a body        is 
defined as homogeneous if the corresponding deformation 
gradient       is independent of the particle's position X.

A homogeneous deformation transforms a straight 
line             of             to a straight line            of       .

Such a deformation x is an affine transformation and has 
the following general form (with                               ) :

In vector form it is:

with its inverse given by  (                                 ) :

Important  cases of homogeneous deformation
1: Translation: M is the unit tensor I and if X0 =0

2: Rotation about the origin:
and  M is the rotation tensor R (RT R=RRT=I)

rigid body motion is decomposed 
into rotation and translation

Transformation 
of a vector in 
homogeneous 
deformation
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4: simple shear

in Cartesian coordinates

in vector form

with a fixed origin

3: Homogeneous deformation:

Uniform 
expansion 

Simple shear
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Small Displacements

Consider a displacement field dependent on a small real  
number                       such  that:

$ where , and               
are known. 

From the Green-Lagrange and Euler-Almansi
strain tesnors:

( 1) ε ε <<

When approaches zero we obtain0  ε →

Lagrangian Eulerian
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Kinematic linearization

Using:

we can write: 

When the displacements are small and
approaches zero, the difference between the two strain
tensors is negligible.

Based on results in engineering applicatios we have:
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Infinitesimal strain tensor

The resulting kinematic linearization:

shows that if terms of order        are negilible
i.e.,                         there is no difference 
between   Green-Lagrange and Euler-Almansi
strain tensors. Therefore, we introduce the 
infinitesimal strain tensor: 

Note:          is a 2nd order tensor because the 
displacement gradient is a tensor shown next.                              

'

'
i k

ik jl
j l

u uc c
x x
∂ ∂

=
∂ ∂

( )u k
kl

l

u
x

∂
∇ =

∂
Note that : 

If it is a 2nd order tensor, it should 
be transformed as follows:

We know that,
'

'
' ' '
i k l l k

i ik k ik ik
j j l j l

u u x x uu c u c c
x x x x x
∂ ∂ ∂ ∂ ∂

= ⇒ = =
∂ ∂ ∂ ∂ ∂

'
'

'

'

l
l jl j jl

j

i k
ik jl

j l

xx c x c
x

u uc c
x x

∂
= ⇒ =

∂

∂ ∂
⇒ =

∂ ∂
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Infinitesimal strain tensor

The resulting kinematic linearization:

shows that if terms of order        are 
negligible
i.e.,                         there is no difference 
between   Green-Lagrange and Euler-Almansi
strain tensors. Therefore, we introduce the 
infinitesimal strain tensor: 

Note:          is a 2nd tensor because the 
displacement gradient is a tensor.                              

Since it is tensor the transformation law for its components 
is given by:

The eigenvalues, which correspond to the principal 
infinitesimal strains, are from the solutions of equation: 

With 

Note that the tensor       is linear in  

Therefore for the strains
resulting from the displacements  
the principle of superposition applies, i.e., the total strain:

corresponds to
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Infinitesimal strain tensor

Given the displacement field, the strains are
calculated frrom:

However, for a given         , a corresponding 
displacement field does not necessarily
exist.  To make sure the displacement field
exists, the conditions of integrability should 
be satisfied. Based on differential calculus
these conditions are obtained by 
differentiating the strain-displacement 
relations, i.e., 

These are the so-called compatibility equations and in
explicit for the are six of them:

The are the necessary and sufficient conditions for a unique
displacement field when the body is simply connected.
for multiply connected elastic solid, they are not sufficient and
additional conditions are needed.
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Infinitesimal strain tensor

1: Interpretation of the component          ,       

Consider an infinitesimal vector dX attached to 
the point X with components (dX1; 0; 0). 

The length of the  corresponding vector dx in         is given by :

relative extension of a material line element 
aligned with direction 1.

The other diagonal components 
and           of         have similar

interpretations.

Deformation of
infinitesimal 
vector aligned
with  e1

(assuming small gradients)



Continuum mechanics review: kinematics

Infinitesimal strain tensor

2: Interpretation of the component

Consider two orthogonal vectors  in          :

Similar interpratation can be given to
and        .

In       these vectors are deformed to          ,         
with components:   

The corresponding lengths are:

The angle           between them is:

with as a slip angle.    

Change in angle
between two vectors
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Infinitesimal strain tensor

3: Relative variation of a volume element

We consider three orthogonal vectors:  

In the referenced (undeformed) configuration.

Volume before deformation:

After deformation: 

Neglecting the higher order terms of the deformation:

which is the trace of the strain tensor .. 

Recalling the definition of the divergence of a vector
field we have:
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Infinitesimal strain tensor

[ ][ ][ ]' TC Cε ε  = 

The matrix form the tensor      is:

To obtain the principla strains we solve the characteristic 
equation:

The three strain invariants are,

i.e., similar to the stress invariants.

[ ]
11 12 13

21 22 23

31 32 33

ε ε ε
ε ε ε ε

ε ε ε

 
 =  
 
 

3 2
1 2 3( ) ( ) ( ) 0I I Iλ ε λ ε λ ε− + − =

1( ) iiI ε ε=

2
1( ) ( )
2 ii jj ij jiI ε ε ε ε ε= − 3 ( ) detI ε =

The changes of coordinates modify the components
of the tensor according to the relation:

For a plane stress problem, its expilict form is:

' 2 2
11 11 22 12
' 2 2
22 11 22 12
' 2 2
12 22 11 12

cos sin 2 cos sin
sin cos 2 cos sin

( ) cos sin (cos sin )

ε ε θ ε θ ε θ θ

ε ε θ ε θ ε θ θ

ε ε ε θ θ ε θ θ

= + +

= + −

= − + −

These expressions and the corresponding ones for 
stresses are similar.  It means that we can use Mohr’s 
circle to calculate strains along different directions.

' '
11 1211 12

' '
21 2221 22

cos sin cos sin
sin cos sin cos

ε εθ θ θ θε ε
ε εθ θ θ θε ε

−      
=      −     
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Application: Experimental strain measurements

We can measure strains along the direction of the 
applied load (in uniaxila traction/compression) with 
the use of  electrical-resistance strain gauge 
(a wire grid or metal foil bonded to the specimen). 
A combination of strain gauges to measure strains on 
a surface in different directions exists. We use a cluster 
of electrical-resistance strain gauges arranged in 
a predetermined pattern and are called Strain rosettes.
Two commonly used ones are:

square rosette:

60o rosette:

2 2
11 22 12

2 2
11 22 12

2 2
11 22 12

cos sin 2 cos sin
cos sin 2 cos sin
cos sin 2 cos sin

a a a a a

b b b b b

c c c c c

ε ε θ ε θ ε θ θ

ε ε θ ε θ ε θ θ

ε ε θ ε θ ε θ θ

= + +

= + +

= + +

[ ] 11 12

21 22

ε ε
ε

ε ε
 

=  
 

12 21( )ε ε=

0 ; 45 ; 90      o o o
a b cθ θ θ= = =

0 ; 60 ; 120      o o o
a b cθ θ θ= = =

11 22 12; ; 2 2 ( )        a c b a cε ε ε ε ε ε ε ε= = = − +

11 22 12
1 2; (2 2 ) ; 2 ( )
3 3

        a b c a b cε ε ε ε ε ε ε ε ε= = + − = −

x2

aθ
x1

bθ

cθ

a

c

b

Strain 
rosette
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Infinitesimal rotation tensor     
or

with

The three independent components of the  antisymmetric 
tensor        can be expressed as the curl of the displacement 
vector

The infinitesimal displacement can be decomposed into a 
sum of a pure strain tensor and a pure rotation. 

An additive decomposition of the displacement gradient is 
not possible for large strains where                 . In this case 
we should use 

3: Relative variation of a volume element

For a displacement field        we have   

or 

symmetric                       antisymmetric
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1 2 1 2
11 22 12

1 2 2 1

1; ;
2

      u u u uε ε ε
x x x x

 ∂ ∂ ∂ ∂
= = = + ∂ ∂ ∂ ∂ 

2 1
1 2

1 2

12 1 2 12

;

;
2

      

  

u uθ θ
x x

πφ θ θ β φ

∂ ∂
= = −
∂ ∂

= − + =

12 12

2 1
1 2 12

1 2

cos sin

2

β φ φ
u uθ θ ε
x x

= ≈ =
∂ ∂

− = + =
∂ ∂
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Objectivity of kinematic parameters

Distinguish between two descriptions 

1: change of coordinate system for the same event for a single observer
This development is the basis of tensor analysis and is imposed by the
requirement that all laws of continuum physics must be independent 
of the choice of coordinate system by the observer.

2: change of the observer or reference frame. Here the same event is 
described in two different reference frames. 
A reference frame must have an observer
to record the event as well as a coordinate system.
EXAMPLE: Inertial reference frames (a body moves with constant 
velocity when free of forces). Newton’s 2nd law hold. 
Anther example is an accelerated reference frames.
Here Newton’s 2nd law needs to be modified.
Rotating reference frame. This frame of reference is rotating 
with respect to an inertial system and requires an additional 
acceleration). Newton’s 2nd law needs to be modified.

In mechanics we want to distinguish 
the kinematic parameters, scalars,
vectors, or tensors, which depend 
intrinsically  on the observer from those 
that are essentially independent.

This is particularly important in the
description of the constitutive relations
with non-linear materials response.

In mechanics of continuous media, 
an event, that is, a physical process, is 
defined by its coordinates in space x  and
the observation time t. 
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Objectivity of kinematic parameters
Consider an event viewed by two observers       and       , 
and noted respectively by              and                    . 

The motion between two observers is a function of
space and time (effects due to relativity are negligible).

The two observers measure the same distance between 
two events as well as the same time intervals between 
events. 

The most general transformation between the two 
observations of the same event is given by:

where

Here             is an orthogonal tensor with time as a 
parameter,            is a vector and      is a scalar.

The same observation at P (experiment) seen by
two observers in the corresponding reference
frames at the same time. For the observer at  
the vector position is x. For the observer at  
we must take into account the rotation of  
with respect to      ..

Two observers move 
in two reference frames
following an event at P.
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Objectivity of kinematic parameters
The motion of the body       described by          
according to the first observer, is described by the second 
observer as                       .

The two descriptions are related as follows:

To examine the ramifications of this relation we consider
two events reordered by:

:                ,                ;        :                         ,      

The relative positions of these events are:

:                                ;        :   

The transformation                           is that of a rigid body. 

Two observers move 
in two reference frames
following an event at P.
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Objective fields 

A vector field transformed according to:

is called spatially objective vector field.

Using this definition we can defined a spatially 
objective 2nd tensor filed.

For two spatially objective vectors v and w
seen by the observer       , are related by:

. 

Since they are objective, the observer         sees

and                             .

A tensor transformed according to the last relation
is spatially objective tensor or independent of the 
reference frame.

In summary

A scalar quantity         is objective if and only if (iif)

A vector quantity        is materially objective iff

A vector quantity         is spatially objective iff

A tensor quantity       is materially objective iff

A tensor quantity       is spatially objective iff

v
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Objectivity of velocity and acceleration

We have for the velocity 

and acceleration    

The definitions of the velocity and acceleration are 
relative and inextricably linked to the observer.

For the deformation gradient tensor we have

and 

Starting from the definitions of the corresponding
Tensors it can be shown that:
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